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Summary. The simple spin polarization model for calculation of the spin densi- 
ties that determine hyperfine coupling constants in free radicals is examined. 
Spin-unrestricted approaches, both without and with removal of spin contamina- 
tion, are discussed and compared with spin-restricted treatments. Basis set design 
and electron correlation effects are also considered. Calculations on small pi 
radicals are presented to illustrate the arguments. Explanations are advanced for 
why some of the simpler treatments seem to work better than might be expected. 
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1. Introduction 

Twenty years ago, when the present author was a graduate student with 
Professor Hirschfelder at the University of Wisconsin, Joe gave a seminar to the 
Theoretical Chemistry Institute with the provocative title "Why Simple Models 
Work".  Considering several very different specific examples, Joe pointed out an 
interesting common feature of simple models: they may often seem to work well 
in spite of not explicitly treating various physical effects that are known to make 
substantial contributions. In such situations, there are at least two ways in which 
a simple model may "work". 

One is that the untreated physical effects may often make contributions of 
about the same magnitude but of opposite signs, thus tending to cancel one 
another out. I f  this balance of errors happens under a wide range of conditions, 
the simple model may appear to be generally valid. However, there will always 
be some conditions where the cancellation does not occur and the model will 
appear to break down. 

Another is that the physical effects that are not explicitly treated may be 
correlated with other effects that are. In that case, empirical adjustment of 
parameters that enter the model may largely account for the influence of the 
missing effects. This situation is recognized when evaluation of the parameters 
from first principles gives results quite different from empirical values. 
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In this issue of Theoretica Chimica Acta that commemorates the late Profes- 
sor Hirschfelder, it seems appropriate to describe how the present author has 
since encountered both of these situations over and over in various guises. The 
general field to be considered is theoretical calculation of electronic spin densities 
that determine the hyperfine coupling constants experimentally observed in free 
radicals by electron paramagnetic resonance spectroscopy. In particular, the 
utility of the simple spin polarization model will be examined to attempt to gain 
insight into why it often seems to "work" so well. This paper constitutes a highly 
personal view, drawing examples mainly from the present author's own experi- 
ence in this area of research. 

Joe certainly did not mean to criticize the use of simple models. On the 
contrary, he pointed out that many important advances in science have come 
from oversimplified ideas. At the same time, he emphasized that any simple 
model must necessarily have a limited range of applicability. It is important to 
determine this range and, when situations outside of it are encountered, to learn 
how to extend the model to treat the relevant "missing" effects. This work is also 
a contribution to those goals. 

First, a general overview is given of various theoretical approaches that are 
often applied to the spin density problem. Then common Hartree-Fock methods 
with and without spin restrictions, the latter with and without removal of spin 
contamination, and single-excitation configuration interaction are discussed and 
compared in some detail. Next, basis set considerations and then electron 
correlation effects are examined. Finally, a brief conclusion is provided. Repre- 
sentative literature is cited throughout, but no attempt is made at a comprehen- 
sive survey. 

2. Overview of methods 

The spin density Q at a point r in space may be regarded simply as the density 
of a-spin electrons minus the density of E-spin electrons at r (where we have 
arbitrarily assigned the excess spin to be ~), normalized to the number of 
unpaired electrons. Mathematically, this can be defined in terms of the electronic 
wave function 7 j of the free radical under consideration as: 

; elec / f  elec 
Q(r) = ~*(x) ~ 6(r, - rl2S~,~(x) dx 71"(x) 2 2S~,7J(x) dx 

i i 

where, for simplicity of notation, we suppress the parametric dependence of the 
wave function on the nuclear coordinates (assuming a clamped-nucleus approxi- 
mation) and where the integrations range over the space-spin coordinates x of all 
the electrons. The denominator is simply the number of unpaired electrons in the 
radical. Note that, despite its name, the spin density is actually a function only 
of spatial coordinates r. 

Hyperfine coupling constants (hfcc) of free radicals observed in electron 
paramagnetic resonance spectroscopy are determined by the electronic spin 
densities at or near the positions of any magnetic nuclei. The Fermi contact 
interaction gives rise to an isotropic hfcc for a magnetic nucleus N located at ru 
that is directly proportional to the spin density there: 

a(N) = 8x /3get~egN~NQ(rN ) 
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Similarly, dipolar interactions give rise to anisotropic hfcc that depend on the 
spin density in the vicinity of ru according to: 

geflegNflu t'( 3rurv -- rZuc3 uv) r -  SQ(v) dr Buy(N) 

where #, v refer to x, y, z and the origin of the coordinate system is taken to be 
at rN. 

In terms of the different physical effects included in the electronic wave 
function, mechanisms giving rise to spin density can be broadly classified in a 
perturbation theory sense as: (a) zero-order direct contributions arising from the 
orbitals singly occupied by the unpaired electrons; (b) first-order spin polariza- 
tion contributions indirectly arising from differential exchange interactions of the 
remaining nominally paired electrons with the unpaired electrons; and (c) 
second- and higher-order effects arising from electron correlation. 

The direct contribution is easily determined from simple Hartree-Fock based 
models, either with or without spin restrictions. It is often the most important 
contribution for anisotropic dipolar couplings and, in the case of sigma radicals, 
for isotropic Fermi contact couplings as well. However, it predicts isotropic 
Fermi contact couplings to be zero in pi radicals and is not always sufficiently 
accurate even for sigma radicals, so other spin density mechanisms must also 
often be examined. 

Spin polarization provides important contributions to the hfcc in many 
radicals. It is the basis underlying commonly used empirical models for pi 
radicals, such as the McConnell relation [1] for hydrogen hfcc and the Karplus- 
Fraenkel relation [2] for a3C hfcc. These both take the spin densities at the nuclei 
to be proportional to the populations of unpaired electrons in the neighboring pi 
atomic orbitals, which can be easily estimated by, for example, simple Hfickel 
theory calculations. The single determinant spin-unrestricted Hartree-Fock 
(UHF) wave function, which incorporates in some fashion both direct and spin 
polarization effects, is the basis for the widely used semiempirical INDO method 
[3]. The local density functional X~ method, which utilizes a spin-unrestricted 
wave function, has also recently been used for spin density calculations [4]. 

The UHF wave function is also often used in ab initio calculations, some- 
times followed by spin annihilation (UHF-AA) [5] or full spin projection. 
(PUHF) [6] to remove spin contamination. The closely related extended 
Hartree-Fock (EHF) method, which corresponds to orbital optimization after 
spin projection of a spin-unrestricted single determinant wave function, has 
occasionally been applied [7]. 

Direct and spin polarization effects are also included in a variety of methods 
based on a spin-restricted open shell Hartree-Fock (ROHF) wave function 
augmented by interaction with singly excited configurations (SCI) that couple to 
it. These include a variant of the semiempirical INDO method [8] as well as ab 
initio approaches carried through first [9] or second order [10] in perturbation 
theory or treated fully by matrix diagonalization [11]. A closely related symme- 
try-adapted cluster model [12] (SAC) brings in certain higher order self-consis- 
tency effects as well. 

Inclusion of true electron correlation effects is much more computationally 
demanding, generally requiring treatment of many configurations corresponding 
to double and possibly higher excitations. For this reason, not much is known 
about the various contributions to hfcc that are lumped together under this 
heading. Starting from a spin-restricted reference, standard single plus double 
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excitation configuration interaction (SDCI) calculations [13] have often been 
carried out. Spin-restricted SAC + CI [14] and MBPT(3) [15] calculations have 
also been reported. A variety of methods to include electron correlation based on 
spin-unrestricted wave functions have been used to determine spin densities, for 
example CEPA [16], MBPT(4) [17], CCSD [17], and QCISD [18]. 

All of these approaches that attempt to recover a substantial portion of the 
correlation energy are computationally intensive and therefore necessarily limited 
at present to small systems. For consideration of large, chemically interesting 
radicals it might be hoped that extensive treatment of electron correlation effects 
will not always be necessary. Simpler procedures that could reliably determine 
hfcc within, say, 10-20% of experiment would be very useful for interpretation 
and analysis of free radical systems. 

The partial success of the simpler empirical, semiempirical and ab initio 
procedures that do not include electron correlation suggests that spin polariza- 
tion effects alone may provide a satisfactory account of the hfcc in many 
radicals. However, there are numerous systems where such methods have seemed 
to fail in giving a good representation of the hfcc. In spin-unrestricted ap- 
proaches, a complicating feature is that it is not theoretically apparent in general 
whether or not spin contamination effects should be removed. In practice such 
removal often improves results, but sometimes it makes them worse. Another 
unfortunate circumstance is that many of the previous ab initio calculations 
aiming to include spin polarization effects have used basis sets that are now 
known to be inadequate for proper description of hfcc. Recently, a [631141] basis 
has been developed for reliable spin polarization calculations [19]. We use this 
here in conjunction with spin-restricted wave functions to unambiguously inves- 
tigate the range of validity of the spin polarization model. 

The MELDF [20] program was used for the configuration interaction 
calculations reported here. UHF and PUHF calculations utilized a modified 
version of GAUSSIAN 76 [21], and MCSCF calculations were performed with 
the COLUMBUS [22] program system. 

In free atoms and diatomics, the high spatial symmetry allows spin and 
orbital polarization effects to be separated and considered independently. How- 
ever, in most polyatomic molecules they are difficult to separate and conse- 
quently are generally treated together. It should therefore be pointed out that the 
term "spin polarization model" is usually loosely taken to include direct, spin 
polarization and orbital polarization effects all together, and the term will be 
used in that sense in this work. 

2.1. ROHF method 

The simplest spin-restricted high-spin open shell wave function for 2m + n 
electrons corresponds to a single configuration constructed as an antisym- 
metrized product of one-electron functions. Paired electrons are placed two at a 
time (with opposite spins) into the m lowest energy doubly occupied orbitals 
(DOMOs) and the unpaired electrons are placed in n higher energy singly 
occupied molecular orbitals (SOMOs) with parallel spins. The wave function is 
then simply the single Slater determinant: 

~ROI~F=A[ff1(1)~I(2) " " " ~9m(2m -- 1)~m(2m)~bm + 1(2m + 1 ) ' ' '  ~m+n(2m "b n)] 
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Fig. 1. Schematic diagram of energy levels and electron 
occupations for orbitals in a doublet free radical 
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In the following, it is important to keep in mind the distinction between a 
molecular orbital (MO), which is a function only of the spatial coordinates of an 
electron, and a spin-orbital, which corresponds to a MO multiplied by an 
appropriate spin function a or ft. Note that the wave function here is spin- 
restricted, i,e., the two spin-orbitals in a pair are constrained to have identical 
MOs. If  the MOs are determined by a self-consistent-field (SCF) optimization 
procedure, this is referred to as the spin-restricted open shell Hartree-Fock 
(ROHF) wave function. 

The one-electron energy levels in this model are thus occupied as in Fig. la 
for the special case of a doublet radical. The DOMOs ~ - . .  ~O,, make no net 
contribution to the spin density because the contribution from any a-spin 
electron is exactly cancelled by an identical contribution of the opposite sign 
from its partner r-spin electron. The spin density in this model is then just due 
to the sum of the probability distributions of the SOMOs: 

j ~ l  

This characterizes the direct contribution to the total spin density, which is 
clearly always nonnegative. 

Consider the planar methyl radical as a simple example. The results in Table 
1 show that the ROHF method gives a reasonable account of the anisotropic 
hfcc, but gives exactly zero for the isotropic hfcc. This latter shortcoming is due 
to the fact that the SOMO is a p orbital perpendicular to the molecular plane. 
It therefore has a node at all the nuclei and so cannot contribute to the contact 
spin density. 

The direct contribution, which is the easiest to calculate, can often be the 
dominant one for anisotropic hfcc and, in some sigma radicals, may also 
dominate the isotropic hfcc. But it has some serious shortcomings for isotropic 
hfcc in general. This is particularly noticeable in pi radicals, as we have just seen, 
and may also be important in some sigma radicals. Clearly, there must be some 
other important mechanism or mechanisms at work in such systems. 

2.2. UHF method 

The most important of the other mechanisms is the indirect spin polarization 
contribution. Although not necessarily the best means to calculate it in practice, 
the source of spin polarization is most easily described in connection with a 
spin-unrestricted single-configuration wave function. The effect is ultimately due 
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Table 1. Hyperfine coupling constants in Gauss 
wave functions 

D. M. Chipman 

for planar methyl radicaP calculated from various 

Method a(13C) a(IH) Bxx(13C) Bxx(lH) B~z(1H) 

UHF/[631141] 57.8 - 4 1 . 7  52.7 - 0 . 6  16.4 
PUHF/[631141] 20.2 - 13.6 53.8 0.1 13.5 
ROHF/[631141] 0.0 0.0 53.5 0.7 11.8 
SCI/[6311411 26.6 - 2 5 . 6  53.0 - 0 . 2  14.7 
Experiment b 27 c - 2 5  ¢ 45 a, 43.4 e 0.5 d, 0.8 e, 0.5 r,g 12.5 g 

a D3 h symmetry and the experimental [23] CH bond length of 1.079/~ are assumed. The x direction 
is perpendicular to the molecular plane and z is parallel to the bond joining carbon with the hydrogen 
listed here 
b The "experimental" isotropic hfcc listed here have been corrected [I 1] to remove the effects of 
out-of-plane bending. Uncorrected experimental values are listed for the anisotropic hfc c, since the 
corrections there are small [ 11] 

Ref. [ 11] 
a Ref. [24] 

Ref. [25] 
r Ref. [26] 
g Ref. [27] 

to the Pauli exclusion principle, which gives rise to nonclassical exchange 
interactions among the electrons. The key point is that this exchange interaction 
only operates between electrons of the same spin. 

Consider a pair of electrons described by DOMO q/kq~ k in a spin-restricted 
single configuration wave function such as discussed in the previous section. 
They will experience identical coulomb interactions with the nuclei and with the 
other electrons, and identical exchange interactions with all the other pairs of 
electrons in DOMOs. But the a-spin electron in this pair will experience an 
additional exchange interaction with each of the unpaired electrons (in the 
SOMOs) that is not sensed by its/~-spin partner. If the two spin-orbitals in the 
pair are allowed to relax separately, they will then differentially polarize into 
slightly different optimum MOs, i.e., the relaxed pair will be described as ~b~qT~. 
The wave function then can be written as the single Slater determinant: 

If the MOs are determined by an SCF optimization procedure, this is 
referred to as the spin-unrestricted Hartree-Fock (UHF) wave function. The 
one-electron energy levels in this model are occupied as in Fig. lb, which is 
meant to schematically show the splitting of each nominally doubly occupied 
pair. The two MOs ¢~ and ~b~ of a particular pair are likely very similar to one 
another, but will not be exactly the same. They no longer then exactly cancel one 
another in the total spin density, which is given in this model by: 

j = l  k = l  

The first sum is easily recognized as the direct contribution from the unpaired 
electrons and, aside from minor differences in the optimized orbitals found in 
each model, is essentially the same as that obtained from the ROHF method. 
The second sum is the spin polarization contribution from the remaining 
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"paired" electrons. Note that if Z k I~ k k~(r) ]2 happens to be larger than ~ I~k ~, (r)12 
at some position r, the net spin polarization contribution to the spin density 
there will be negative. 

This model provides an appealing physical explanation of the common 
occurrence of negative spin densities. As a simple illustrative example, consider 
again the planar methyl radical. We have already seen that there is no direct 
contribution from the rc unpaired electron itself. The remaining "paired" elec- 
trons are in sigma orbitals. The valence sigma orbital pairs contribute to the 
bond connecting carbon to each hydrogen. As noted above, the a-spin member 
of each such pair experiences an additional exchange interaction with unpaired 
electron on carbon that is not experienced by its partner r-spin electron. At large 
distances the exchange interaction is weakly attractive, so an a-spin electron in 
the vicinity of a hydrogen atom is pulled toward the carbon, thereby slightly 
depleting the density of a-spin electrons at the hydrogen nucleus. This leaves 
behind a slight excess of r-spin electrons at the hydrogen, i.e. a negative spin 
density there. A similar explanation leads one to expect that the ls core pair 
localized on carbon will make a negative contribution to the spin density at the 
carbon nucleus. 

Table 1 includes UHF results for planar methyl radical. Compared to 
experiment, it is seen that the anisotropic hfcc are given reasonably well but the 
isotropic hfcc are much too large in magnitude. This is the usual situation with 
pi radicals. However, there are some instances where UHF gives results that are 
about right or even too low. The only general conclusion that can be reached is 
that UHF may give good isotropic hfcc for some sigma radicals that are 
dominated by the direct contributions, but it is often quantitatively unreliable 
when spin polarization effects are important. 

One might well wonder how the semiempirical INDO method, which is based 
on a UHF wave function, can "work" so well in many instances. For example, 
with planar methyl radical it gives [3] a(13C)= 45.0 G and a(1H) = -22.4 G. 
This corresponds to very good agreement with experiment for a(~H) and 
substantial error for a(13C), which however is still considerably closer to experi- 
ment than the ab initio UHF result (see Table 1). 

In the INDO procedure, the UHF wave function is actually used only to 
determine the spin population in the appropriate s orbital on the atom of 
interest, e.g. ls on hydrogen and 2s on first-row atoms. The Fermi contact spin 
density is then evaluated separately by multiplying this spin population by a 
parameter representing the square of the amplitude of this orbital at the nucleus. 
But this parameter is not determined from the wave function itself. In fact, the 
2s orbital in each first-row atom is actually represented in INDO by a nodeless 
Slater-type orbital having zero amplitude at the nucleus. Instead, it is 
parametrized by least squares fitting to obtain the best overall agreement of the 
calculated hfcc with experimental values. It is quite impressive that so many 
good results can be obtained from a method having just one disposable parame- 
ter for each element. 

Compared to the true hydrogen atom wave function, the INDO parameter 
representing IlsH[: is only 6% too high. Since ab initio UHF results are 
generally a factor of two or more too high for hydrogen hfcc, this indicates that 
the INDO wave function, in order to produce reasonable hfcc, must provide 
much smaller hydrogen atom spin populations. Furthermore, this must be a very 
systematic discrepancy between the ab initio UHF and semiempirical INDO 
wave functions. 
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It is known [2, 11, 13] that the carbon ls core contribution in methyl is 
large and negative, acting to partially cancel a very large positive valence 
contribution to a(13C). The reasonable results obtained by INDO for ~3C hfcc, 
which are usually [3] closer to experiment than seen here for methyl, is there- 
fore interesting since INDO does not even treat the core electrons explicitly. It 
has been shown [11], however, that the contribution from the ls core electrons 
is proportional to that of the 2s electrons over a wide range of conditions in 
methyl, so that their influence can be effectively brought in by the empirical 
adjustment of {2sc {2. The parametrized value of 12Sc 12 is therefore well below 
[28] the value obtained from accurate SCF calculations. The proportionality 
breaks down, however, for significant stretches in bond lengths [11] so INDO 
may not work well for radicals in unusual bonding situations or far from their 
equilibrium geometries, such as might be encountered in examining some vibra- 
tional corrections. 

2.2.1. Spin contamination in UHF. One general criticism of the UHF method is 
that the wave function does not correspond to a pure spin state. For example, a 
nominal doublet UHF wave function actually contains contamination from 
quartet, sextet, and higher spin states. There is a long standing controversy over 
whether or not it is advisable to remove this spin contamination before evalua- 
tion of spin properties. A strong argument against removal comes from a formal 
analysis [29] showing that UHF gives the correct diagrams in a perturbation 
theory development of the exact wave function, whereas ad hoc removal of 
spin contamination does not. But in practice, UHF is often found to give hfcc 
much larger than experiment, while removal of spin contamination leads to 
somewhat better agreement. In this section we offer an opinion on the contro- 
versy. But first, a brief discussion on the nature of the spin contamination is in 
order. 

The source of spin contamination can be clearly seen through a perturbation 
theory approach to the UHF wave function in which the ROHF wave function 
serves as the zero-order approximation. Detailed derivations can be found in 
several places [29-33] so we give here only an outline of the results. For 
simplicity, only the doublet case will be explicitly considered. Generalization to 
an arbitrary high-spin open shell is straightforward and brings in no essential 
new features. 

The doublet UHF wave function for 2m + 1 electrons can be written: 

All of the orbitals ~k~ can freely be taken as mutually orthonormal, as can the 
orbitals ~kg, since any nonorthogonalities within each set would be removed by 
antisymmetrization anyway. Most UHF computer programs produce "canoni- 
cal" orbitals for which each member of one set may overlap all members (of  the 
same spatial symmetry) in the other set. However, the invariance of ~b UI~v to 
unitary transformations within each set makes it possible to find "correspond- 
ing" orbitals [34] such that each orbital in one set is orthogonal to all orbitals in 
the other set except for one (if any) with which it is paired. Thus: 

This greatly simplifies the analysis, and we assume it has been arranged. It is also 
assumed that the phases of the orbitals are adjusted to make the overlap 
integrals Sk all real and positive. 
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The natural orbitals of the UHF wave function [34] consist of ¢~,+1 for the 
open shell electron and, for the paired electrons, the orthonormal sums and 
differences of the corresponding orbitals, viz: 

~h k = (~h~ + ~O~)/2/~k #k = x/( 1 + Sk)/2 

~h* = (~k~ -- ~k~)/Z2k 2k = x/(1 -- Sk)/2 
With these, the two orbitals describing the kth UHF pair can be expressed as: 

One can expect that the corresponding orbitals ~k~ and ~O~ will be very similar to 
one another so that the average natural orbital ~k will be essentially the same as 
the ROHF orbital describing this pair. The difference natural orbital ~k* provides 
spin polarization for this pair. One also expects that the overlap integral Sk will 
be near unity so that Pk is also near unity and 2k is a small number. 

We now expand the UHF wave function in powers of the small numbers 2k. 
Terms will be kept only through first order. Since/~k differs from unity only by 
terms of second and higher order in 2k, it can be replaced by unity for the 
present purposes. The UHF wave function then becomes: 

~eu"v = ~e"o-~ + x/~ ~ ~ k  + . . .  
k=0  

The zero-order term that is independent of all the 2k is essentially the ROHF 
wave function: 

~,RO.F = A[¢I ~7,""" ¢~7~""" Cm4~0m + 1] 

By itself, this term provides a direct contribution to the spin density from ~h,. + 1, 
but no spin polarization contribution because the paired orbitals are exactly 
doubly occupied. The first-order correction terms linear in the 2~ have wave 
functions corresponding to ~kk ~ O *  single excitations from ~pROrIV, viz: 

~-~ = J i ~ ( A [ q , ,  ¢7, • • • O * q L  • • • ~ m O ~  + 11 

"-I- A [ ¢ 1 ¢ 1  • • • ¢~1k ' ' "  ~lmCm~.lm+ 1]) 

Double excitations from 7 jg°nv  would contribute to terms quadratic in the 2k21, 
etc. 

The normalized singly excited terms Vk are not eigenfunctions of the total 
spin operator S 2. They can be expressed in terms of linear combinations of spin 
eigenfunctions as: 

where 

~r/f = % / ~ ( A [ ~ ¢ 1 ¢ 1  " " "  (]l~¢k" "" Omlffml[Im+ 11 

"F 111 / /1¢1"""  ¢~1k ' ' "  ~.ImCml~rn+ 1] 

- -  2 A [ 0 1 4 1  " • " ¢ ~ , O k  " " " ~ k m O , . f f m  + 1 ] )  

,/,~ = , /~(A[~,,  ¢1""  O* ¢ ~ " "  O~¢mq'm +,] 
+ A[~D141"" 4'~Ok''" I//m~ml]/m+ 11 

- t - A [ ~ ¢ 1 4 1 " " "  ~¢*~bk " ' "  ~lm~lm~m+ 1]) 
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Here ~ff is a pure doublet while ~u~ is a quartet and is the main source of spin 
contamination. It is important to note that this resolution into spin eigenfunc- 
tions has forced the introduction of a new term involving a spin-flip of the open 
shell electron, i.e., ~/m + 1 ~ Iffm + 1" 

Second and higher order correction terms bring in still other spin contami- 
nants. For a nominal doublet, these correspond to sextet, octet, etc., spin states. 
In practice, the magnitudes of these higher order terms vary from system to 
system, sometimes being quite important and other times being negligible. 

Brillouin's theorem guarantees that any configuration differing from ~uROHF 
by only one spin orbital will not connect with it in the Hamiltonian matrix. In 
effect, the variational SCF procedure for orbital optimization folds such terms 
into ~uROHV itself, making it stable to first order against such excitations. This 
applies to all single excitations of the open shell electron such as ffm+l ~ ~b* +1. 
It applies to a Ok -* ~* excitation of a paired electron only for the spin coupling 
that corresponds in a genealogical construction to first making a singlet coupling 
of ~k with ~* andthen finally coupling ~km+ 1 to produce the resultant doublet. 
Due to Brillouin's theorem, these kinds of configurations do not appear in the 
above development. 

The spin eigenfunction for ~ff corresponds instead to first making a triplet 
coupling of Ck with ~b*, and then finally coupling ~k,, ÷ 1 to produce the resultant 
doublet. This configuration connects with ~ROHF in both the Hamiltonian and 
the spin density matrix. This is because one of the terms contains ~m+~, i.e., a 
spin-flip of the open shell electron, and therefore differs from ~uROHF in two 
spin-orbitals. The historical preoccupation of quantum chemistry with dosed 
shell systems has left a semantic ambiguity about the precise meaning of 
"excitation level" in open shell systems. Here we see that a single spatial 
excitation can lead to a change of two spin-orbitals in the wave function, so ~ 
could reasonably be called either a single or a double excitation depending on 
whether one is referring to differences in MOs or in spin-orbitals. We prefer a 
nomenclature in which a term such as this is described as a "single excitation". 
Since the variational principle is sensitive to differences in spin-orbitals, this 
requires keeping in mind that Brillouin's theorem does not apply to all "single 
excitations" in open shell systems. 

Putting together the above relations, the UHF wave function through first 
order can now be written as: 

k = 0  

A calculation allowing full variational freedom to the coefficients ot~ ~v~ and ~v~ 
would lead to zero weight for ~u~ since it is of the wrong total spin. However, 
we see here that the UHF method does not allow full variational freedom to 
these two coefficients, but instead fixes their relative proportions at the outset 
and optimizes only one particular linear combination of them. Therefore, ~ 
will have a nonoptimal weight in the UHF wave function due to the enforced 
presence of the spin contaminants. 

The PUHF wave function through first order corresponds to simply eliminat- 
ing the spin contaminant to obtain: 

k = 0  
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UHF-AA is the same as PUHF in this low order treatment, although they differ 
in the higher orders. While the projected wave function is a pure doublet, it can 
still be criticized in that the coefficients of the first-order correction terms in ~ff, 
having been carried over unchanged from the UHF wave function, are still not 
determined from an unconstrained variational optimization. 

The spin density through first order is given in each method by: 

O ROHF(r) = [~m +1 (r) [2 

QtmV(r) = [~m+l( r ) [2+4 ~ 2k~bk(r)~*(r ) + . . "  
k=0 

QPuHF(r) = I 'm+ l(r)12 + 4/3 Z + ' ' '  
k=0 

Each of these procedures has the same zero-order direct contribution. The latter 
two have first-order spin polarization corrections of the same general form, but 
with different values of the coefficients. The coefficient of 4 2k multiplying each 
UHF spin polarization correction term can be traced to contributions of 4/3 2~, 
coming from ~ff and 8/3 3,~ coming from ~ ,  the latter being allowed because 
functions of different total spin can connect in matrix elements over the spin 
density operator. Upon projection, only the 4/3 2k contribution from ~gff remains 
so that the net PUHF spin polarization correction is only one-third as large as 
in UHF. This factor of 1/3 becomes n/(n + 2) in the more general case of a 
high-spin open shell holding n electrons, e.g., 1/2 for a triplet, 3/5 for a quartet, 
etc. In cases of significant spin contamination from higher states, the first-order 
analysis is less accurate and these simple relations break down. 

Having seen how it arises, we are now in a position to address the question 
of whether or not such ad hoc removal of spin contamination is advisable. The 
real question is which of the coefficients 4 2k or 42k/3 produced by the unpro- 
jected or projected procedures, respectively, is closest to that which would be 
obtained from a variationally unconstrained CI calculation over the configura- 
tions 7 ~lmRF and the 7~.  Using an uncoupled approximation to perturbation 
theory, Nakatsuji [32] has obtained explicit expressions for these coefficients, 
thereby providing a means to answer this question. He finds in lowest order that 
the 2k of the UHF and PUHF procedures are given by: 

~k = ( < ~ D  I/~l ~/~)> __ EROHF) __ (Kin+ 1,k "[- gm+ 1,k* "~- gk,k*) 

Note that the denominator consists of the difference between a promotion 
energy, which is positive, and a sum of three exchange integrals, which are also 
positive. (The EHF method provides coefficients similar to this, but with the sum 
of the three different exchange integrals replaced by 3 Kk,k., and is subject to 
arguments similar to those given below in connection with UHF.) Nakatsuji [32] 
further finds that the optimum coefficient from an unconstrained variational CI 
calculation is also similar to this, but missing all the exchange integrals in the 
denominator. If these exchange integrals happen to be small compared to the 
promotion energy, then the coefficients provided by the UHF method will be 
near the optimal ones and the UHF spin density will be accurate. On the other 
hand, larger values of the exchange integrals will lead to a smaller denominator 
and so make the UHF spin polarization too large. In the latter situation, a 
procedure that reduces the spin polarization contribution may give better results. 
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However, there is no theoretical justification for reducing it by the particular 
factor of 1/3 that is found in PUHF. 

In fact, the situation may vary for different electron pairs in the same radical. 
This has apparently actually been observed in the case of the carbon hfcc in 
planar methyl radical [11]. It was found there that the UHF method gives the 
carbon ls core contribution about right, and that the large net overestimation of 
the hfcc comes from a valence contribution that is much too large. The PUHF 
result gives better apparent agreement with experiment, but by indiscriminately 
multiplying all the contributions by about 1/3 it obtains a separate ls core 
contribution that is much smaller than the correct one. 

The theoretical considerations can therefore be deemed inconclusive on the 
question raised at the beginning of this section. Some support may be given to 
UHF, but only under particular conditions that may not often be met in 
practice. UHF will generally give spin polarization contributions that are too 
large. Spin projection acts to reduce the spin polarization contribution, and so 
may appear to give better results in certain instances, but there is no real 
theoretical justification for it. 

Rather than consider theoretical arguments, the issue is more often judged by 
results of actual applications. We give PUHF results for planar methyl radical in 
Table 1. The anisotropic hfcc, which are dominated by the direct contribution, 
are indeed little changed by spin projection and the isotropic hfcc, which arise 
only from the spin polarization contribution, are indeed reduced by about a 
factor of three, as predicted. Compared to experiment, the UHF results are much 
too high and the PUHF results are somewhat too low for the isotropic hfcc in 
Table 1, the PUHF results being closer to experiment. Results such as this are 
typical for hydrocarbon pi radicals [35, 36]. Such findings by many workers have 
led to a general perception that annihilation and/or projection is desirable in 
general for computing spin properties from a UHF wave function. 

Contrary examples come from recent studies on the HECN [37] and ethyl [38] 
radicals. The large r-hydrogen hfcc in these systems are due to approximately 
equal contributions from direct, spin polarization, and electron correlation 
effects. In both cases UHF gives a good result, while PUHF is much too small. 
Actually, the apparently good UHF result is fortuitous, a consequence of its 
overestimation of the spin polarization contribution accidentally being about the 
right magnitude to make up for the electron correlation contribution that it 
ignores. Interestingly, the other hfcc in these radicals follow the more common 
situation of UHF being much too large and PUHF a little too small. 

In summary, neither UHF nor PUHF can be given firm theoretical support 
for calculation of spin densities. Computational results, when carefully analyzed, 
are indecisive as well. The "improvement" in UHF spin properties often seen 
after annihilation and/or full projection is accidental and can not be counted on 
in general. Since such methods can not be trusted to provide uniformly accurate 
results, this author has more recently turned instead to spin-restricted ap- 
proaches for this problem. 

3. Single excitation configuration interaction 

As intimated in the previous section, spin polarization can be less ambiguously 
introduced via a fully spin-restricted framework. Beginning with the occupied 
MOs {~kk: k = 1 . . .  rn + 1} used to build up the doublet ROHF wave function, 
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let {Xt } be a set of orthonormal virtual MOs that span the remainder of the 
space within the given basis set. Then augmenting the ROHF wave function with 
all spin polarization single excitations leads to what might be called the SP-SCI 
method, viz: 

~SP'SCI = c0~ROHF -[- ~ 2 Ck, t l l lkDt 
k=l t 

where 
~flkDt = N//~(/[@l@'l " '" Z t ~ k  " " " O m ~ f f m O m +  1] 

-t- A [ O I ~ I  " " " Z t O k  " " " O m ~ m O , n +  1] 

- 2A[01 qTl""" XtOk " " " O,, O,,qYm + 1]) 

The ~ , t  are configurations with triplet intermediate coupling of Ok and Xt, just 
as discussed in the previous section. Recall that such configurations couple with 
7 t~°nF both in the Hamiltonian matrix and in the spin density matrix. 

The analogy with the unconstrained variational calculation discussed in the 
previous section can be made closer by collapsing the sum over virtual orbitals 
into a single normalized spin polarization orbital characteristic of each pair: 

ckO  = Z ck,,z, 
t 

With this we have the compact description 

~[/SP-SCI = C0~[/ROHF _~ ~ C k ~ J D  

k=l 
with ~ff having precisely the same form as in the previous section. A little more 
manipulation is required to give this SP-SCI wave function the same properties 
as in the previous section, because the 0~ orbitals obtained here may not be 
mutually orthogonal. A linear transformation can be carried out among the 0~ 
to bring about their orthonormality. This alone would generate extra configura- 
tions corresponding to interpair excitations, but a simultaneous unitary transfor- 
mation can be carried out among the 0k to preserve a wave function of the above 
form having just one spin polarization configuration for each pair of electrons. 
These considerations uniquely determine the orbital mixings, except possibly for 
mixing within small degenerate sets in cases of high spatial symmetry, and 
provide orbitals very similar to those discussed previously in connection with the 
UHF and PUHF procedures. In fact, the Ok and 0* so obtained are the SP-SCI 
charge density natural orbitals for pair k. Furthermore, the SP-SCI spin density 
natural orbitals for pair k are simply their normalized sums and differences [ 11]. 
Because there are no terms coupling different pairs, these allow for a useful 
decomposition of the spin density into separate contributions from each individ- 
ual pair of electrons. 

A full single excitation (SCI) calculation should also give similar results since 
Brillouin's theorem implies that the additional single excitations included would 
make only small contributions. Another possibility is to determine the orbitals in 
both the reference determinant and the spin polarization configurations self-con- 
sistently by what might be called a SP-MCSCF calculation [39, 40]. The SAC 
method [12] is a variation on that theme in which still higher order self-consis- 
tency effects are brought in. The UHF and PUHF models share the same natural 
orbitals, differing only in their occupation numbers [6], and these are also very 
similar to the natural orbitals of the SP-SCI method [11]. This suggests that 
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Table 2. Hyperfine coupling constants in Gauss for methyl, ethyl, and allyl radicals 

Method a(13C~) a(13C#) a ( IH~)  a (1Ha)  

c a  3 (v 2 vibrational average a) 
SCI/[631141] 36.2 - 2 3 . 9  
Experiment 38.3 b - 2 3 . 0  b 

C2Hs  (v 6 vibrational average c) 
SCI/[631141] 39.7 -- 14.0 --24.0 19.4 
Experiment 39.1 b -- 13.6 b -- 22.4 d 26.9 d 

C3H5 e 

SCI/[631141] 18.0 - 19.6 - 14.1, - 15.1 2.1 
Experimental 21.9 r - 17.2 r - 13.9 f - 14.8 r 4.2 f 

a The geometry used for the methyl radical calculation is given in footnote (a) of  
Table 1. The procedure used to carry out the vibrational average over the v 2 large 
amplitude out-of-plane bend at carbon is described in Ref. [ 11] 
b Ref. [42] 

c The ethyl radical calculations are taken from Ref. [38]. The geometry is based on 
the MCSCF/6-31G** calculation of  Ref. [43]. The procedure used to carry out the 
vibrational average over the v6 large amplitude out-of-plane bend at the s-carbon 
is described in Ref. [38]. The three calculated fl-hydrogen hfcc for the almost freely 
rotating methyl group have been averaged for comparison to experiment 
d Ref. [44] 

e The allyl radical calculations are carried out at the geometry determined in the 
A C P F / M I D I 3 *  calculation of Ref. [45] 
f Ref. [46] 

UHF-based procedures determine the spin polarization orbitals themselves well, 
although not the weights of the configurations in which they appear. Another 
compact description of the spin polarization effects can therefore be obtained by 
carrying out a small CI calculation over spin-restricted configurations con- 
structed from the UHF natural orbitals [31, 41]. In practice, it probably doesn't 
make too much difference which of these methods is employed, or any of many 
other variations that can be imagined. All are physically based on describing the 
lowest order spin polarization effects in a spin-restricted framework and should 
give similar results in most applications. 

Results on planar methyl radical from the SCI method are given in Table 1. 
It is seen that themethod gives very close agreement with experiment for the 
isotropic hfcc and results of about the same quality as the other methods 
considered for the anisotropic hfcc. We therefore confirm that the simple spin 
polarization model is quite good for methyl, and that the problem with UHF 
and PUHF methods must be in the artificial constraints they place on the 
weights of the spin polarization terms. 

SCI/[631141] results for the isotropic hfcc of methyl, ethyl and allyl radicals, 
including vibrational corrections for the large amplitude out-of-plane bending at 
C~ in methyl and ethyl, are collected in Table 2. The results for methyl are very 
close to experiment, as are those of ethyl with the single exception that a(Ha) is 
28% too low. Comparing the allyl results to experiment, a(C~) is 18% too low, 
the magnitude of a(Ca) is t4% too high, and both the a(H~) are good. The value 
of a(Ha) in allyl is lower than experiment, the modest 2.1 G absolute error 
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appearing as a large 50% relative error because of the small magnitude of the 
coupling constant. 

We see here that the spin polarization model (as exemplified by the SCI/ 
[631141 ] results) applied to the methyl, ethyl, and allyl radicals gives good 
isotropic hyperfine coupling constants for carbons and for ct-hydrogens, but 
gives low values for fl-hydrogens. In SCI/[631 ]41] calculations on the nitrogen 
centered H2CN radical [37], we have found similar good results at nitrogen and 
carbon, but a 33% underestimate of the large values at the fl-hydrogens. It is 
tentatively concluded that the spin polarization model generally does well for 
first-row atoms and a-hydrogens, giving results well within 20% of experiment, 
but systematically underestimates r-hydrogen hfcc. 

4. Basis sets 

It is unfortunate that many of the early studies on hfcc were flawed by the use 
of basis sets that are now known to be inadequate for the purpose. In this section 
we discuss some important considerations in design of basis sets for use in spin 
density calculations. 

The use of Gaussian functions for determination of Fermi contact spin 
densities has sometimes been criticized because any finite set of Gaussians is 
inherently unable to satisfy the correct cusp condition associated with the 
singularity of the potential at the nucleus. This is essentially a constraint on the 
derivative of the wave function [47] and cannot be met because s-type Gaussians 
arrive at the nucleus with zero radial slope. Of course, in a molecule there may 
be some contribution to the cusp at one nucleus from the tails of Gaussians 
centered at other nuclei, but such contributions are generally much too small to 
allow for satisfaction of the cusp condition. 

We believe, however, that this criticism is unwarranted and that the difficulty 
in satisfying the correct cusp condition is not really that important for spin 
density calculations with Gaussian basis sets. The Fermi contact interaction 
depends on the amplitude of the s orbital at the nucleus, not on its derivative. By 
proper design of a Gaussian basis set, it is possible to approach arbitrarily 
closely to the correct amplitude at the nucleus. There is a problem, however, in 
that most common Gaussian basis sets were designed mainly to describe the 
chemically important valence regions, and have not been prepared to describe 
the regions near the nuclei well. ~ 

Based on the fact that Slater-type orbitals have'more proper behavior near 
the nucleus, two indirect approaches have been suggested for correcting this 
problem in Gaussian basis calculations. One [48] applies a correction factor 
determined by comparison to calculations on the charge density at the nucleus of 
the free atom, which has independently been accurately determined using Slater- 
type orbitals. Another [49] utilizes STO-6G Gaussian basis sets to first determine 
the electronic wave function, then replaces these with the corresponding true 
Slater-type orbitals for the subsequent hfcc evaluation step, assuming no change 
in the expansion coefficients. 

We have chosen [ 19] instead a more direct procedure to resolve this problem 
by simply including additional tight (i.e., short range, large exponent) s functions 
in the basis. It has been found that such tight s functions can be contracted in 
with the existing innermost functions, using contraction coefficients determined 
by simple ROHF calculations. With the popular Huzinaga [50] (9s5P14S) 
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primitive basis, it was found that the improper behavior of the s-type Gaussian 
functions near the origin leads to an underestimate of about 5% in the spin 
density at first-row atom nuclei, and a larger 15% error for hydrogen. The 5% 
error at the first-row atoms may often be acceptable in spin polarization 
calculations, where effects due to electron correlation, geometry uncertainties, 
and vibrational corrections may lead to other errors of this or larger magnitude 
anyway. However, the 15% error at hydrogen is unacceptably large and we 
recommend routinely including a tight s function at hydrogen, which brings the 
error there down to about 6-7%. If higher accuracy is sought, one can add a 
tight s function to each first-row atom and a second tighter s function to 
hydrogen to bring this error down to the 2-3% range [19]. Adding yet another 
tighter s function at each atom would bring these errors down to less than about 
1%. 

These considerations can be different for other basis sets. For example, the 
large energy optimized van Duijneveldt Gaussian basis sets [51] already have 
very high exponent s functions and can be utilized as they stand in most spin 
density calculations. Even-tempered Gaussian sequences [52], on the other hand, 
are quite weak in this respect and would require very long expansion lengths to 
provide adequate amplitude at the nucleus. Some means of correcting this 
behavior, such as discussed above, is necessary if even-tempered Gaussian 
sequences of reasonable expansion length are to be used for accurate spin density 
calculations. 

The [631141] contracted Gaussian basis we have been using in this work, 
which corresponds to the [5s2pld[3tslp] + diffuse sps basis in the notation of 
our earlier study [19], was developed especially for spin polarization calculations 
of hfcc by comparing to accurate numerical SP-MCSCF calculations on the free 
first-row atoms and their diatomic hydrides. It is based on a (lOs6pld[6slp) 
primitive cartesian Gaussian basis that includes the (9s5p 14s) standard Huzinaga 
primitive basis augmented with diffuse functions [53] (sp on first-row atoms, s on 
hydrogen), a tight (high exponent) s function on hydrogen, and polarization 
functions (d on first-row atoms, p on hydrogen). Only the innermost few 
primitives are contracted, i.e., the contraction groupings are 
(511111,411,113111,1). 

Spin polarization calculations with this basis set are compared to those of 
other common basis sets in Table 3 for several small hydrocarbon pi radicals. 
The [631 [41] results give good agreement with experiment, indicating that the 
spin polarization model itself is adequate for these cases. However, it is seen that 
smaller basis sets sometimes give erratic results. 

The split valence 6-31G basis set [56] and the related 6-31G** basis [57] that 
includes polarization functions are very popular and are known to provide a 
good account of the energetics in many molecular systems. However, it is seen in 
Table 3 that these basis sets give carbon hfcc that are too large by more than a 
factor of two. Split valence basis sets have reasonable flexibility in the chemically 
important valence regions, but for spin density purposes they are overcontracted 
in the core region and do not allow for spin polarization of the carbon ls shell 
that provides a large negative contribution [2, 11, 13] to the spin density at the 
carbon nucleus. An additional diffuse s function is also necessary in general [53] 
to adequately represent spin polarization in the valence region. 

The split valence basis sets give hydrogen hfcc that are approximately 
correct. This is actually fortuitous, due again to a cancellation of errors [19]. 
Overcontraction of the hydrogen basis together with the absence of a diffuse s 
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Table 3. Hyperfine coupling constants in Gauss for several pi radicals a calculated with various basis 
sets 

Method a(13C~) - a(13C#) a(IH~) a(lHp) 

CH 
SCI/6-31G 35.4 -25 .4  
SCI/6-31G** 35.1 - 22.7 
SCH4212] 13.0 -24.2  
SCI/[53 ] 3 ] 22.9 - 19.1 
SCI/(95 [4) 10.2 - 19.7 
SCI/[631141] 13.0 - 19.7 
Experiment 16.8 b -- 20.6 c 

CH 3 (planar) 
SCI/6-31G 63.2 -29.5 
SCI/6-31G** 71.4 -33.3  
SCI/[4212] 31.1 -31 .4  
so/[5313] 41.6 -25.2  
so/(9514) 30.4 -26.0  
SCI/[631 [41] 26.6 -25 .6  
Experiment 27 d - 25 d 

C2H 5 (planar) 
SCI/[4212] 35.4 - 16.8 -31 .6  21.1 
SCI/[631 [41] 30.9 - 14.9 -25.9  19.7 
Experiment (39.1) ~,f - 13.6 e - 22.4 g 26.9 g 

C3H5 
SCI/[4212] 20.4 -21.6  - 17.5, - 18.4 2.9 
SCI/[631141] 18.0 - 19.6 - 14.1, - 15.1 2.1 
Experiment 21.9 b - 17.2 n - 13.9 h, - 14.8 a 4.2 h 

a The experimental [59] bond length of 1.1199/~ is used for CH radical. Geometries used for the 
other radicals are described in the footnotes to Table 2. Methyl and ethyl radicals are taken to be 
planar at the or-carbon 
b Ref. [54] 
c Ref. [55] 
d Ref. [11]. See also footnote (b) of Table 1 

Ref. [42] 
fThe experimental [42] value of 39.1 G for the or-carbon in ethyl radical includes a significant 
vibrational averaging contribution from out-of-plane bending. SCI[631 [41] calculations [38] estimate 
this to be ~ 8-9  G. Applying this calculated correction to the observed experimental result suggests 
that an "experimental" value of ~30-31 G would be more appropriate for comparison to calcula- 
tions on planar ethyl radical 
g Ref. [44] 
h Ref. [46] 

f u n c t i o n  l eads  to  a s i gn i f i can t  o v e r e s t i m a t e  o f  t he  sp in  p o p u l a t i o n  a t  h y d r o g e n .  
B u t  m u c h  o f  th i s  o v e r e s t i m a t e  is c o m p e n s a t e d  b y  a s i gn i f i c an t  u n d e r e s t i m a t e  o f  
t h e  a m p l i t u d e  o f  t h e  s o r b i t a l  a t  t h e  n u c l e u s ,  a s s o c i a t e d  w i t h  t h e  l a ck  o f  a t i g h t  
s f u n c t i o n .  T h e  n e t  r e s u l t  is a c o n s i s t e n t  m o d e s t  o v e r e s t i m a t e  o f  t h e  h y d r o g e n  
c o u p l i n g .  

F r o m  th i s  d i s c u s s i o n ,  i t  is c l ea r  t h a t  a d e q u a t e  r e p r e s e n t a t i o n  o f  t he  c a r b o n  
c o u p l i n g  r e q u i r e s  s o m e  b a s i s  set  f lex ib i l i ty  in  t he  o u t e r  c o r e - i n n e r  v a l e n c e  r eg ions ,  
i.e., j u s t  as  w i t h  v a l e n c e  r eg ions ,  t h e  c o r e  m u s t  a l so  b e  g i v e n  d o u b l e  z e t a  
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representation. Therefore, a full double zeta basis is the smallest reasonable set 
for hfcc determination, since each highly occupied orbital requires a partner spin 
polarization orbital that is localized in roughly the same region of space but is 
typically a little more diffuse. It should not be concluded that all double zeta and 
larger bases will provide satisfactory results, though. One that does is Dunning's 
[4212 ] contraction [58] of the Huzinaga [50] (9s5p [4s) basis. It is seen in Table 
3 that this basis generally overestimates the hfcc somewhat, but at least gives 
qualitatively correct results. The Dunning [53[3] contraction, despite being larger 
and more flexible, does not provide this cancellation as well and gives a poorer 
result for carbon. The fully uncontracted (9s5p[4s) basis has ample flexibility 
over the range it spans, but it is still not quantitatively reliable for spin density 
determination. Important effects not described by the fully uncontracted 
(9s5p 14s) basis require that it be augmented by diffuse s functions to describe the 
valence shell spin polarization, a tight s function on hydrogen as discussed 
above, and higher angular momentum functions to provide orbital polarization. 

The errors found with the [4212] basis, compared to the [631 [41] results, are 
fairly systematic. They average about 10% high for carbon and about 20% high 
for hydrogen in the hfcc examples of Table 3. Use of the [42[2] basis in spin 
polarization calculations therefore appears reasonable for preliminary estimation 
of hfcc. A larger basis such as [631141] is required for more accurate work. 

5. Electron correlation 

It should now be clear that the simple spin polarization model often provides a 
useful estimation of hfcc. But if high accuracy is desired, it will generally be 
necessary to go beyond this and include electron correlation effects. This is more 
computationally demanding, and consequently there is little information about 
how electron correlations affect spin densities. 

It is well known that the two-electron charge density matrix F, together with 
its reduction to the one-electron charge density matrix, determines the total 
electronic energy and all charge density properties of a system. Less well known, 
and far from obvious, is the fact [60] that F also uniquely determines the 
one-electron spin density matrix, and therefore spin density properties such as 
hfcc. In fact, a simple explicit prescription has been given [60] for construction 
of the spin density matrix from F, which depends only on F being obtainable 
from a wave function that is a eigenfunction of the total spin operators S 2 and 
Sz. In some rough sense, one should therefore expect that introduction of 
electron correlation effects that "improve" F should also "improve" the spin 
density. 

In this section we will consider the CH radical as a case study to examine the 
effects of electron correlation on hfcc. The wave function is dominated by the 
ROHF configuration, i.e., there are no important nondynamical correlation 
effects to complicate the situation, so this should be a typical representative of a 
wide variety of free radicals. Full configuration interaction (FULLCI) corre- 
sponds to including all possible configurations and represents the most complete 
calculation that can be carried out within a given basis set. One systematic 
procedure for approaching this limit is to start with the ROHF wave function and 
add to it single excitations (SCI), then also doubles (SDCI), triples (SDTCI), 
quadruples (SDTQCI), etc. Such results are shown for CH in Table 4. Ignore for 
the moment the results labelled MR(4)-SDCI, which will be described later. 
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Table 4. Hyperfine coupling constants in Gauss calculated for CH 
radical a with several basis sets including various levels of electron corre- 

lation 

Wave function [42[2] [6311411 [6321 [421] 

a(13C) (experiment b = 16.7 __+ 0.7) 

SCI 13.0 13.0 14.8 
SDCI 15.3 8.9 10.7 
MR(4) + SDCI 16.6 13.4 16.4 
SDTCI 16.5 12.9 16.3 
SDTQCI 16.6 13.1 
FULLCI 16.6 

a(aH) (experiment c = -20 .6  _ 0.1) 
SCI - 24.2 - 19.7 - 20.4 
SDCI -24 .3  - 19.1 - 18.5 
MR(4) + SDCI -26.1 -21 .2  -20 .7  
SDTCI - 26.0 - 21.1 - 20.7 
SDTQCI - 26.1 - 21.2 
FULLCI - 26.1 

~The experimental [59] bond length of 1.1199/~ is used in the calcula- 
tions 
b Ref. [54] 
c Ref. [55] 

With the double zeta [42[2] basis set it is seen that the results increase 
smoothly in magnitude with increasing excitation level. SCI provides a large 
fraction of the limiting results, SDCI gives a significant correction and SDTCI a 
smaller but still significant further correction. At this level the results are 
essentially converged to the SDTQCI and FULLCI  results, which are identical to 
one another and are somewhat larger in magnitude than experiment. 

However, the approach to high excitation levels is not monotonic for hfcc 
determined from larger basis sets. With the [631141] basis that was developed for 
spin polarization (i.e., SCI) calculations, SDCI provides corrections to SCI that 
decreases the magnitude of both hfcc. SDTCI again increases the magnitude ot" 
the hfcc and is again essentially the same as the SDTQCI result, which pre- 
sumably is essentially the same as FULLCI.  

The studies just discussed are really only of academic interest, since such 
small basis sets are incapable of describing some of the physically important 
effects of electron correlation. Enlarging the basis to include more high angular 
momentum functions (d c = 1.12, 0.28;fc = 0.56; Pn = 2.00, 0.50; dn = 1.00) pro- 
duces a [6321 [421] basis that should allow for a more realistic treatment of 
correlation effects. With this basis SDCI leads to a larger correction than seen 
before, which again makes the agreement with experiment worse for both nuclei, 
and again this is rectified by SDTCI. Although higher excitation calculations are 
not feasible with this basis, we see that SDTCI agrees quite well with experiment, 
and the smaller basis results make it plausible that inclusion of still higher 
excitations would not change the results much further. Apparently, then, double 
and triple excitations separately provide important contributions to the hfcc, but 
these are of opposite sign and tend to cancel one another, thereby collectively 
providing only a small net electron correlation correction to the SCI result. 
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More exaggerated behavior of this nature has been encountered in the case 
of H2CN radical [37]. The large methylene hydrogen hfcc of ~90 G is due to 
roughly equal contributions of ~ 30 G each from direct, spin polarization, and 
electron correlation effects, whereas the carbon and nitrogen hfcc are dominated 
by just the spin polarization contributions. Just as in CH, with a large basis set 
capable of describing electron correlation it was found that including double 
excitations decreases the magnitude of all the hfcc and leads to somewhat worse 
agreement with experiment. The large errors at hydrogen compared to experi- 
ment were also attributed in that work to the effects of higher level excitations 
in the wave function. 

Thus far we can say that while spin polarization (i.e., SCI) often, but not 
always, provides hfcc in fairly good agreement with experiment, corrections due 
to pair correlations (i.e., SDCI) are generally important. Triple excitations are 
also significant, although there is currently no evidence for qualitative impor- 
tance of any higher excitations. Full SDTCI calculations are very expensive and 
it would be useful if it could be shown that only a subset of the triple excitations 
is responsible for providing the important hfcc contributions. We hypothesize 
that the important triple excitations are just double excitations from the spin- 
polarization singles. 

It is feasible to test this hypothesis on CH radical. We first simulate the SCI 
calculation with a nearly equivalent but more compact wave function obtained 
by carrying out a four configuration SP-MCSCF calculation, including the 
dominant determinant and the three spin polarization configurations 7t~, 7J~, 
and ~ ,  i.e., one for each of the highly occupied a pairs. These four configura- 
tions are then used as the reference space for a multireference SDCI calculation, 
i.e., all single and double excitations with respect to any of the four reference 
configurations are included. This is referred to as MR(4)-SDCI in Table 4. 
Compared to a CI expansion based on the ROHF reference, it effectively 
contains all single and double excitations and the subset of triple excitations that 
corresponds to double excitations with respect to the spin polarization singles. 
With the [63211421] basis, the total number of configurations is just 18% of that 
in full SDTCI and the correlation energy recovery corresponds to 46% of the 
distance from SDCI to SDTCI. Despite the much shorter configuration list, the 
results in Table 4 show that the MR(4)-SDCI calculation gives hfcc close to 
SDTCI. 

Thus, the hypothesis appears true at least for CH radical. We have also 
obtained similar (unpublished) results for NH radical. The finding is also 
consistent with the fact that a UHF-based QCISD method [18] seems to perform 
quite well for hfcc. Since UHF itself effectively provides spin polarization single 
excitations, adding singles and doubles with respect to it brings in configurations 
that appear as triple excitations in a spin-restricted framework. The method also 
probably corrects for a major part of the spin contamination problem, as 
evidenced by that finding in closely related coupled cluster approaches [61]. It is 
therefore closely analogous to the MR-SDCI procedure described here. 

If this hypothesis turns out to be true in general, then we have gained some 
valuable insight into why the simple spin polarization model often works well. It 
appears that double excitation corrections to hfcc due to pair correlations are 
important but often lead to much worse agreement with experiment. But triple 
excitations, that in some sense serve as spin polarization for the important pair 
correlations, are just as important and are often of opposite sign, tending to 
cancel the double excitation contributions. As a consequence, the simple spin 
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polarization model often appears to work well even though it ignores these 
important effects. The methylene hydrogens in H2CN radical seem to provide an 
example where this fortuitous cancellation does not occur and electron correla- 
tion corrections in toto are important. The systematic underestimation of r-  
hydrogen hfcc noted previously in spin polarization calculations on ethyl and 
allyl radicals may also be a result of failure of such cancellations of electron 
correlation effects. 

This behavior leads to a caveat for practical CI calculations. It is easy 
enough for automated scanning procedures, such as are sometimes used to select 
the important configurations to be included in correlation calculations, to miss 
even some of the important first-order spin polarization effects. For example, the 
~P~s configuration describing the l s ~  Is* single excitation for the core spin 
polarization on a first-row atom may typically [53] have a CI coefficient of only 
,-~ 10 -3. If the effective Is* orbital is actually split up in practice among many 
virtual orbitals, then some important CI coefficients will be even smaller and 
could easily be missed. Any CI procedure for hfcc determination should there- 
fore be forced to automatically include all 7~ff type single excitation configura- 
tions. If, as we have argued in this section, the important triple excitations are 
related to higher-order mixed correlation-spin polarization effects, then configu- 
rations with extremely small coefficients may be important for the spin density. 
A means for including them must be found if configuration selection procedures 
are to be successful for hfcc determinations. The MR-SDCI procedure utilized 
here may provide a useful framework for approaching this problem. 

6. Conclusion 

A variety of points relating to spin density determination have been examined in 
this work, uncovering many instances of simple methods seeming to work better 
than they should. Here we provide a succinct summary of the more important 
findings. 

Semiempirical procedures for hfcc determination that are based on spin 
polarization models often appear to work well. For example, the popular INDO 
method is often used for analyzing experimental hfcc. It gives reasonable results 
by virtue of adjusting parameter values to make up for important missing effects. 
It can be expected to work well only for radicals at or near their equilibrium 
geometries and with no unusual bonding situations. 

Semiempirical calculations also sometimes fail, so more sophisticated ab 
initio approaches are required. The ROHF method describes the direct contribu- 
tions to hfcc, although it does not treat the indirect spin polarization contribu- 
tions that are of primary importance in pi radicals. The UHF method introduces 
spin polarization in an easily visualized manner, but spin contamination makes 
its use in computations controversial. Removal of the UHF spin contamination 
is also controversial. Careful evaluation of theoretical arguments and computa- 
tional studies on the spin contamination question leads to the opinion that 
neither of these procedures can generally be depended upon for reliable results. 

The spin-restricted SCI approach is free from these concerns and indicates 
that the spin polarization model is capable of reasonably estimating the hfcc in 
a variety of pi radicals, although r-hydrogen couplings seem to be systematically 
underestimated. A simple [42[2] double zeta basis set [58] gives fairly good spin 
polarization hfcc due to fortuitous cancellation of large errors, although this 
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does  not  occur  for  m a n y  o ther  c o m m o n  small  basis sets. The  differences found  
with a more  sui table  [631141] basis specifically designed for  hfcc de t e rmina t ion  
appea r  systematic ,  so tha t  the s impler  [4212] basis  can  be useful for  p re l iminary  
spin po la r i za t ion  hfcc calculat ions.  

Elec t ron  cor re la t ion  effects are  found  to be significant. In  par t icu la r ,  the 
good  agreement  wi th  exper iment  of ten observed  in SCI ca lcula t ions  is usual ly  
ru ined when doub le  exci ta t ions  are  included,  p rov ided  the basis  set is adequa te  
for  t rea t ing  cor re la t ion  effects. However ,  con t r ibu t ions  f rom tr iple  exci ta t ions  are 
jus t  as i m p o r t a n t  as, or  even more  i m p o r t a n t  than,  those  f rom doub le  exci ta t ions  
and  of ten tend  to cancel  them, wi th  the result  tha t  the net  e lec t ron cor re la t ion  
correc t ions  a p p e a r  small .  E x a m i n a t i o n  o f  the i m p o r t a n t  t r iple  exci ta t ions  sug- 
gests tha t  they can be regarded  as descr ibing spin po la r i za t ion  with  respect  to 
pa i r  corre la t ions .  The  sys temat ic  underes t ima t ion  o f  r - h y d r o g e n  hfcc in spin 
po la r i za t ion  calcula t ions  appears  be an example  o f  these higher  o rder  e lec t ron 
cor re la t ion  con t r ibu t ions  not  cancel l ing out.  

In  summary ,  the spin po la r i za t ion  mode l  can p rov ide  a very useful  s imple 
tool  for  es t imat ion  o f  hfcc. F o r  the radicals  examined  here, it  gives sa t i s fac tory  
results  for  mos t  o f  the hfcc, and  the cases where  it does no t  pe r fo rm so well 
appea r  to be sys temat ic  enough  to be predic table .  I t  can also serve as a va luable  
ini t ial  step in more  sophis t ica ted  app roaches  to spin densi ty  de te rmina t ion .  
These results are sufficiently encourag ing  tha t  work  is now in progress  to 
del ineate  the general  range  o f  val id i ty  o f  the spin po la r i za t ion  mode l  for  larger  
systems. 
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